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Abstract
We review recent work on frustrated electronic phase separation in strongly
correlated systems and the connection between electronic phase separation at
a mesoscopic scale and structural phase separation at larger scales associated
with volume instabilities. The former is due to the competition between phase
separation tendencies and the long-range Coulomb interaction and surface
energy effects. Above a critical value of the Coulomb interaction electronic
phase separation is not possible and a volume instability arises. The system
shows the tendency to phase separate into two neutral phases with different
unit cell volumes.

PACS numbers: 64.75.+g, 71.10.Hf, 71.10.Ca

1. Introduction

Doped correlated insulators show a natural tendency to phase separate (PS) into carrier
(electron or hole) rich regions and carrier poor regions for doping close to the insulating phase
[1–4]. This inhomogeneity of charge is frustrated by the long-range Coulomb interaction.

The giant magnetoresistant manganites are a prominent example of these phenomena.
Nagaev and collaborators predicted in the 1970s the appearance of drops of metal hosted by
the insulator or vice versa for a doping range close to the parent compound [1]. Drops have
been observed in La1−xCaxMnO3 [5] in good agreement with Nagaev’s prediction.

On modelling homogeneous strongly correlated systems the long-range Coulomb (LRC)
interaction is often neglected. This is because at long distances, exchange and correlation
effects are irrelevant and hence the effect of the long-range interaction is to renormalize the
Madelung potential by an irrelevant constant. In doing so one is implicitly treating Coulomb
interactions in the Hartree approximation. Short-range interactions cannot be neglected since
they have important dynamical effects giving rise to all variants of Hubbard-like models.

Clearly this framework breaks down when one considers non-uniform phases. The
simplest generalization for non-homogeneous phases of the usual short-range models used
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in condensed matter theory is to treat the long-range interaction at the Hartree level. This
takes correctly into account the ‘tails’ of the long-range Coulomb interaction that are usually
neglected while keeping the short-range simplicity of the models [6–8]. As a first step one
solves the short-range model for uniform phases and then considers nonuniform mixed phases
and at the same time adds the long-range effects as an electrostatic correction to the energy.
One has also to include an interface energy cost.

For simplicity we assume that the size of the inhomogeneities is mesoscopic, i.e. much
larger than the interparticle distance. As in the ordinary Maxwell construction our results
are independent of the specific nature of the two phases. This is in contrast with the more
complicated case in which the scale of the inhomogeneities is of the order of the interparticle
distance and the resulting texture is determined by the details of both short- and long-range
interactions on an equal footing [3].

In our case because of the mesoscopic hypothesis the inhomogeneities can be treated as
charged classical objects which order in a regular array. At each density the distance between
inhomogeneities and their size is determined by the competition between the long-range
Coulomb interaction and the interface boundary energy. Both effects introduce an energy cost
(hereafter the mixing energy) and tend to frustrate the phase-separated state.

Assuming a uniform density (uniform density approximation (UDA)) within each phase
we obtain the coexistence equations which generalize the Maxwell construction to the present
situation. These equations can be applied to different geometries of the inhomogeneities
(drops, layers, etc). Their solution is presented when each phase can be simply characterized
in terms of a few density independent physical parameters (e.g. compressibility, etc). The
physics is controlled by a dimensionless coupling constant λ which is given by the ratio
of the characteristic energy loss due to the mixing energy and the characteristic energy
gain due to the tendency towards PS obtained by the Maxwell construction. We find that:
(i) the coexistence region shrinks as λ increases and the uniform phases are stabilized for
densities at which a Maxwell construction in the absence of long-range Coulomb interaction
would predict a PS state. (ii) The transition to the mixed state is abrupt in contrast with
ordinary Maxwell construction. (iii) The densities of the local phases depend on the global
density n, again in contrast with Maxwell construction, giving rise to novel nonlinear effects.
(iv) The inhomogeneity radius is of the order of or smaller than the electric field screening
length. (v) If the two phases are both compressible, a critical value of the coupling constant
(λc) exists above which mesoscopic PS is not possible. In the latter case two situations can
occur depending on the nature of the uniform phases. If the uniform phases can be connected
continuously the system is always in a uniform neutral single phase. If the electronic free
energies have instead a crossing point at a critical density nc, a lattice instability occurs close to
nc leading to coexistence of two uniform neutral phases with different unit cell volumes. This
‘structural’ phase separation is similar to the volume collapse transition observed in mixed
valence systems and we expect a similar phenomenology [9, 13].

2. Free energy and coexistence equations: the uniform density approximation

We consider a density-driven first-order phase transition in the presence of the LRC interaction
and surface energy. We look for the formation of a mixed state by increasing the density from
the uniform A phase. We use two different geometries for the mixed state. (i) The drop
geometry consists of a Wigner crystal of drops of B phase in the host phase A. (ii) The layered
geometry is made of a periodic array of alternating layers of A and B phases.

For both geometries the electronic density within each single-phase region is taken as
uniform (UDA) and in general it will give a different result from the compensating background
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Figure 1. Schematic view of a cell density profile in the UDA with a drop (layer) of B phase in
the host A. The origin is at the centre of the cell. The full cell diameter (width) is 2Rc for drops
(layers). The dashed region of the background compensates the A density and part of the B density.

density. This is of course an approximation since both densities will tend to adjust within each
phase also, to make the total electrochemical potential constant. The UDA will be relaxed in
section 4 for the layered geometry by minimizing a free energy functional on a simple local
density approximation (LDA). We anticipate here that both the UDA and the LDA give very
similar results thus justifying our extensive use of the UDA.

We start by computing the total free energy. In the same spirit of the MC we assume that
the free energies of hypothetically homogeneous bulk phases are known and given by FA and
FB . We define the mixing energy Em as the sum of the total surface energy and electrostatic
energy (computed below). We work at a fixed total volume V and number of particles N. At a
given temperature the total free energy is F = FB(VB,NB) + FA(VA,NA) + Em. We have to
minimize this with respect to VB and NB subject to the conditions VB +VA = V,NB +NA = N .
The volume fraction of the B phase is x ≡ VB/V . We can work with the free energies per unit
volume f ≡ F/V, em ≡ Em/V, fB ≡ FB(VB,NB)/VB and with the densities nB ≡ NB/VB ,
etc so that the function to minimize is

f = (1 − x)fA(nA) + xfB(nB) + em. (1)

The constraint on the number of particles is written as n = xnB + (1 − x)nA and the constraint
on the volume is satisfied by putting VB/V = 1 − x. It is convenient to define δ ≡ nB − nA

and to use the constraint in the number of particles to eliminate nB and nA in favour of n
and δ.

In order to compute the mixing energy we first consider the drop geometry. We assume
that the drops are spheres of radius Rd . This will be a good approximation as long as x is
small and the crystal field is also approximately spherical. This is true for fcc, bcc and hcp
lattices [10, 11]. To compute the electrostatic energy we use the Wigner–Seitz approximation
[1, 10, 11]. We divide the system into slightly overlapping spherical cells each one with the
volume 4πR3

c

/
3 = V/Nd where Nd is the number of drops and Rc is the radius of the cell.

Figure 1 shows a schematic view of the cell density profile.
Next we compute the electrostatic energy. The cells are globally neutral (by construction)

and only the charge inside the cell contributes to the electric field in the cell.
The charge density of phase B is nB (actually −enB but we drop the charge of the particles

−e for simplicity). The dashed background charge density in figure 1 (−nA) compensates
the A charge density nA, and a slice of height nA of the B charge density. For the purpose
of computing the electrostatic energy these charge densities can be eliminated and one is left
with the density nB − nA(= δ) inside the drop and −(n − nA) for the background. We will
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call the former the ‘drop contribution’ and the latter the ‘background contribution’. There is
no ‘host’ contribution due to the above cancellation.

Another assumption is that the charge is spread uniformly and that microscopic
discreetness effects can be neglected. One can see that corrections to the electrostatic energies
due to discreetness are of order a2

/
R2

d where a is the characteristic length of the microscopic
structure (for example a lattice constant). Therefore they are negligible in our analysis which
considers Rd � a.

With the above approximations the total electric field inside the cell is written as
E = Eb + Ed where b (d ) refers to the background (drop) contribution. Integrating the square
of the electric field we obtain three contributions to the electrostatic energy: ε = εd + εb + εd−b

with

εd = 1

8πε0

∫
d3r E2

d (2)

with ε0 the static dielectric constant and a similar equation for the background. The interaction
energy is

εd−b = 1

4πε0

∫
d3r EbEd . (3)

The use of the static dielectric constant is well justified because we are assuming a static
super-structure which certainly will produce relaxation of the ions which in turn will screen
the electric field. We are assuming by symmetry that the electric displacement is parallel to
the electric field. The fields can be easily evaluated with Gauss theorem. One obtains

εd = Q2 3

5ε0Rd

(4)

εb = Q2 3

5ε0Rc

(5)

εd−b = 3Q2

ε0

(
− 1

2Rc

+
R2

d

10R3
c

)
(6)

where Q ≡ −eδvd is the effective charge inside the drop. The volume of a drop is vd =
4πR3

d

/
3 and the number of drops is given by Nd = VB/vd = xV/vd . We also have that

x = R3
d

/
R3

c . Finally the total electrostatic energy per unit volume can be put as

ee = 2πe2δ2

5ε0
R2

c x
5/3(2 − 3x1/3 + x). (7)

Setting one of the densities in δ to zero one recovers the expressions obtained by Nagaev
and collaborators for the particular case of a mixed state composed of an antiferromagnetic
insulating phase and a ferromagnetic metallic phase [1, 12].

The surface energy is parametrized by a quantity σ with dimensions of energy per unit
surface. In general σ will be a function of the densities nA, nB . The total surface energy per
unit volume is

eσ = 4πσR2
d

Nd

V
= 3σx2/3

Rc

. (8)

These two contributions add to give the mixing energy per unit volume em = ee + eσ .
Due to the constraint we have three parameters to determine (δ, x,Rc). The mixing energy

is the only contribution which depends explicitly on the geometry. We can therefore eliminate
Rc in favour of δ and x by minimizing em with respect to the cell radius to get

Rc =
(

15σε0

4πx(2 − 3x1/3 + x)e2δ2

)1/3

. (9)
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Figure 2. The function u(x) that parametrizes the mixing energy for the layer geometry and the
drop geometry.

Now we consider the layered geometry. The cell consists of a layer of width 2Rc. The
centre of the cell is occupied by a layer of width 2Rd of B phase and the rest is occupied by
A phase. Figure 1 serves as a schematic plot of the density profile also in this case. r is a
coordinate perpendicular to the layers with the origin at the centre of the B layer. The volume
fraction now is given by x = Rd/Rc. By following analogous arguments as for the drops we
obtain

ee = 2πe2

3ε0
δ2R2

c x
2(1 − x)2 (10)

eσ = σ

Rc

(11)

Rc =
(

3σε0

4πx2(1 − x)2e2δ2

)1/3

. (12)

Once Rc has been eliminated for both geometries the mixing energy can be put as

em =
[
σ 2e2δ2

ε0

]1/3

u(x) (13)

where all the geometric information is stored in u(x):

u(x) = 35/3
( π

10

)1/3
x(2 − 3x1/3 + x)1/3 (drops) (14)

u(x) =
(π

2

)1/3
[3x(1 − x)]2/3 (layers). (15)

In figure 2 we plot u(x).
The free energy should remain invariant with respect to an exchange A ↔ B and

x ↔ 1 − x. We will term this as ‘phase exchange symmetry’. Figure 2 shows that this
symmetry is only approximately realized by the u(x) for drops. The deviation is due to
the fact that the surface energy is minimized when the minority phase inhomogeneities are
spherical. Our drop solution imposes this at small x but violates this in the opposite case of
x → 1, where the minority phase inhomogeneities have a complicated geometry defined by
the interstitial region between the spherical drops.
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A better treatment should allow for a switch from the unoptimized interstitial geometry to
a spherical geometry at x > 1/2 with an energy gain given by the exchange of u(x) in u(1−x)

as shown in figure 2. A comparison between the reflected curve and the original u(x) shows
that this geometry optimization compared to an apparently very bad geometry gives rise to a
modest lowering of the energy. The same happens when we switch from the layered geometry
to the spherical drop geometry as shown in figure 2. We can conclude that the dependence on
geometry is weak.

The spherical drop geometry has lower energy than the layered geometry as expected
from general arguments on surface tension but close to x = 1/2. Here our spherical drop
solution is not adequate in any case. In fact in this region drops and the crystal potential will
be far from spherical.

To avoid the complications of switching from different geometries we define a
symmetrized drop function given by

u(x) = 3
5
3

(π

5

) 1
3

{
x(1 − x) − [x(1 − x)]

4
3

2

}
(symm. drops)

which interpolates smoothly between the correct drop geometry in the limits x → 0 and
x → 1. To determine the optimal geometry at intermediate x is beyond the scope of this work;
however, as apparent in figure 2, u(x), and consequently all our results, are weakly sensitive
to the particular geometry considered.

We can also define a symmetrized drop radius that interpolates smoothly between the B
drop radius at small x and the A drop radius for x close to 1:

Rd =
(

15σ

πe2δ2

)1/3 1

2 − [x(1 − x)]1/3
. (16)

This expression for Rd is strictly valid close to x = 0, 1, otherwise it has the meaning of a
typical inhomogeneity size.

Although the layer solution has higher energy due to its simplicity it is an excellent test
ground for checking the approximations. We take advantage of this fact to test the UDA
approximation in section 4.1. In addition the layer geometry has the extra advantage that, by
construction, it respects the phase exchange symmetry.

Anyway since u(x) depends weakly on geometry our results for macroscopic
thermodynamic quantities will be largely independent of the geometry itself. When possible
we present our results in a geometry-independent way by leaving the function u(x) unspecified
in our expressions. Minimizing the free energy with respect to δ and x one obtains

µB − µA = − 2(eσ )2/3u(x)

3(ε0δ)1/3x(1 − x)
+

2(eδ)2/3u(x)

3ε
1/3
0 σ

(
1

x

∂σ

∂nA

− 1

1 − x

∂σ

∂nB

)
(17)

pB − pA = (µB − µA)[n + δ(1 − 2x)] +

(
e2σ 2δ2

ε0

)1/3

u′(x)

− 2δ5/3e2/3u(x)

3(ε0σ)1/3

(
∂σ

∂nA

+
∂σ

∂nB

)
. (18)

Here pA = −fA + µAnA, (µA = ∂fA/∂nA), etc are the ‘intrinsic’ pressures (chemical
potentials) of each phase. The word ‘intrinsic’ stands for the values of these quantities in
the presence of a fictitious fully compensating background, in other words they refer to a
uniform single-phase situation. Equations (17), (18) determine the jump in these quantities at
the interface in order to have thermodynamic equilibrium when long-range Coulomb forces
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and surface energy are present. These equations are valid for a general geometry described
by the function u(x). Note that as long as u(x) preserves the phase exchange symmetry the
equations also preserve this symmetry.

To analyse the effect of the long-range forces and of the surface energy in the jumps let us
neglect for simplicity the density dependence of the surface energy (∂σ/∂nA = ∂σ/∂nB = 0)

and concentrate on the drop geometry. Due to the different charge distributions, the
electrostatic potential energy −eφ of an electron inside and outside the drops is different.
In equilibrium this jump in the electrostatic potential should be compensated by a jump of the
intrinsic chemical potentials (equation (17)) to make the electrochemical potential constant in
the whole system. For δ > 0 the drop repels electrons so the electrostatic potential energy
will be lower outside the drop, i.e. −eφA < −eφB . The intrinsic chemical potential outside
will have to be larger than inside as the sign in equation (17) implies.

Regarding the pressure, in equilibrium the intrinsic pressure inside the drop, pB , should
equal the pressure exerted by the host pA plus the pressure exerted by the mixing forces. For
δ > 0 the electrostatic energy induces a negative contribution to the pressure since an increase
in the drop volume at constant particle number decreases the difference in densities between
the interior and the exterior of the drop and hence the Coulomb cost. This effect is given by the
first term in equation (18). The second term proportional to u′(x) is a geometric contribution.

In the limit e → 0 one gets µB = µA = µ and pA = pB = p, i.e. µδ = fB − fA, which
are the conditions for MC.

3. General analysis of the mixed state in the uniform density approximation

In this section we set up the basic ideas for inhomogeneous solutions. For simplicity we
model each phase free energy with a parabola and assume that the surface tension is density
independent. Without loss of generality we write the parabolas as a quadratic expansion
around the MC densities:

fA(nA) = f 0
A + µ0

(
nA − n0

A

)
+

1

2kA

(
nA − n0

A

)2

(19)
fB(nB) = f 0

B + µ0
(
nB − n0

B

)
+

1

2kB

(
nB − n0

B

)2
.

The quantities with the ‘0’ superscript (or subscript below) satisfy MC in the absence of LRC
forces, i.e. f 0

B − f 0
A = µ0δ0 and δ0 = n0

B − n0
A. The linear slope µ0 is the same for the two

phases due to the MC condition. The MC density n0 and the volume fraction are related by
n0 = n0

A + δ0x. The constants kA, kB are essentially the compressibilities of the two phases.
For non-interacting electrons at T = 0 the compressibility coincides with the density of

states. For the 3D free electron gas we have

kfree = 31/3mn
1/3
0

π4/3h̄2 (20)

with m the electronic mass.
For a band of spinless electrons of width W and a flat density of states per unit volume

given by 1/(a3W) the free energy at zero temperature is parabolic so the expansion of
equation (19) is exact. The chemical potential is given by µ0 = Wa3n0 + �0 with �0 a
band-dependent shift related to the Madelung potential and the compressibility given by

kflat = 1

Wa3
. (21)
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Another useful realization is a nondegenerate gas where we have

kgas = n0

KT
. (22)

Our aim in the following is to obtain the equations which control the deviation from MC
behaviour in the presence of the mixing energy.

We define a dimensionless global density

n′ ≡ (
n − n0

A

)/
δ0

which measures the distance from the point in which the B phase appears in the absence of
Coulomb forces. In MC the coexistence region is given by 0 < n′ < 1.

Equations (17), (18) determine δ, and x for a fixed density where now µA,µB, pA and pB

can be expressed in terms of the parameters appearing in equations (19).
In practice it is much easier to solve the equations by fixing the volume fraction x and

solving for δ and n, i.e. we find which density one should put in the system to obtain a mixed
state with a given volume fraction. This is because the solutions happen to be multivalued
functions of n whereas they are single-valued functions of x (see below).

For a fixed volume fraction x we define the dimensionless density deviations from the
MC values: n̂ = (n − n0)/δ0 and δ̂ = (δ − δ0)/δ0. The density deviation n̂ measures the
shift in the global density needed to have the same volume fraction of a system without LRC
interaction.

To fix the energy units it is convenient to choose one of the two compressibilities as a
reference, for example the largest. We define km = max(kA, kB). Energies per unit volume
will be measured in units of the characteristic PS energy δ2

0

/
km. The latter is essentially

the difference between the uniform parabolic free energy and the MC free energy at the
characteristic density δ0.

Now we define two important reference length scales in the theory. The characteristic
size of an inhomogeneity for which the Coulomb energy balances the surface energy is given
by the Rc of the previous section with the geometric factors dropped and the density evaluated
at the MC value. This defines the scale

ld =
(

σε0

e2δ2
0

)1/3

. (23)

The other length is given by l2
s = ε0/(4πe2km). By relaxing the UDA we will show in

section 4 that ls is a screening length. In other words if the reference phase (the one with km)
is interpreted as a metal, ls is the characteristic distance which the electric field penetrates.

The theory has two dimensionless parameters. One is the ratio kB/kA. The other measures
the strength of the mixing energy effects in units of the characteristic PS energy δ2

0

/
km and is

given by

λ = 2
km

δ2
0

(
9πe2δ2

0σ
2

5ε0

)1/3

= 1

2

(
9

5π2

)1/3 (
ld

ls

)2

. (24)

The characteristic mixing energy is given by the factor with the power 1/3 in the middle
expression. The constant λ characterizes the competition of the mixing energy cost and the
MC like energy gain due to phase separation. The coupling constant goes to zero as e → 0
with σ finite. This corresponds to the usual PS. The case σ → 0 with finite e corresponds to
an infinite number of drops (or layers) of zero radius. In this maximum intermixing situation
the charges of the two phases spatially coincide and the Coulomb cost also goes to zero so
that the MC is again valid. Note however that this last idealized situation cannot be reached in
practice because at some point for small drop radius the continuous approximation will fail.
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(lower curves) for small λ versus the volume fraction x for the layered and the drop geometry (see
equation (26)).

Inserting the explicit expressions (19) of fA and fB in equations (17), (18) we obtain the
following equations for the density deviations:

n̂

(
1

kB

− 1

kA

)
+ δ̂

(
1 − x

kB

+
x

kA

)
=

(
5

9π

)1/3
λu(x)

3km(1 + δ̂)1/3x(1 − x)

xδ̂ − n̂

kA

+

[
n̂δ̂(1 − x) +

n̂2

2

](
1

kB

− 1

kA

)
+

δ̂2

2

[
1 − 2x

kB

+
2x

kA

+

(
1

kB

− 1

kA

)
x2

]
(25)

=
(

5

9π

)1/3
λ(1 + δ̂)2/3

2km

[
u′(x) +

2u(x)

3(1 − x)

]
.

The coexistence equations (25) can be solved numerically for general values of the
parameters.

For small λ, i.e. for small mixing energy, we can linearize the equations neglecting higher
order terms in δ̂ and n̂. We will refer to this as the linearized UDA. The linearized solution
takes a simple form and is explicitly symmetric with respect to an exchange of phases when
written in the original variables:

nA = n0
A +

1

6

(
15

π

)1/3
kA

km

λδ0

[
u′(x) +

2u(x)

3(1 − x)

]
(26)

nB = n0
B +

1

6

(
15

π

)1/3
kB

km

λδ0

[
u′(x) − 2u(x)

3x

]
.

In the case of λ = 0, according to MC, the system separates into two phases with densities
n0

A, n0
B respectively independently of the volume fraction. For nonzero λ and small x the B

phase divides into drops or layers and the density in each phase depends on the volume fraction
of the B phase. The deviation of each density from the MC prediction is proportional to λ

and to the compressibility of each phase. Note that the density of an incompressible phase
(k → 0) does not depend on the volume fraction even in the presence of LRC forces.

In figure 3 we show the behaviour of the two functions which determine the dependence
of the densities on the volume fraction. In the drop geometry and for small x both nA and nB

tend to be larger than in the MC case whereas in the layered geometry only nA is larger. This
gives rise to minor qualitative differences in the behaviour of drops and layers. Apart from
this the overall behaviour is similar.
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The equation for the density of one phase (equation (26)) has a transparent interpretation
in the limit in which the other phase, say A, is incompressible (kA = 0). Assume that the
A phase is the vacuum and so exerts no pressure and has zero density. We can consider that
the mixing forces due to the electrostatic and surface energies exert an ‘external’ pressure on
the B phase inhomogeneity. In equilibrium the intrinsic pressure of the B phase (pB) should
compensate this ‘mixing pressure’ (pB = pm). The latter is given by

pm = ∂em

∂x
− 2em

3x
. (27)

On the other hand, a change in the external pressure corresponds to a change in the nB

density according to the B phase equation of state. This follows directly from our definition
of compressibility:

kB ≡ n0
B

�nB

�pB

where we have replaced a derivative by a finite different ratio. We can obtain the second
linearized expression in equation (26) directly from this definition using that the MC density
corresponds to zero intrinsic pressure,

nB − n0
B = kB

pB

n0
B

∝ kBn0
B

[
u′(x) − 2u(x)

3x

]
.

The mixing pressure can be negative. This implies that the density is less than the MC
density. From the lower curves in figure 3 we see that for drops the pressure is positive for
small x and then becomes negative whereas for layers the pressure is negative for all x.

Remarkably, in both cases the mixing pressure is a decreasing function of x. Since in
general x is an increasing function of n′ we can anticipate that nB will decrease as n′ increase
(see below). This important effect has been used to explain the anomalous Curie temperature
of manganites [7].

Note that for small x we have pB ∼ u′(x)/3 so a decreasing mixing pressure can be
directly related to the negative curvature of u(x) (figure 2).

Specific results will be presented in the next section for the drop geometry and in
section 4.1 for the layered geometry.

3.1. Results of the UDA for the drop geometry

Now we switch to the symmetrized drop solution which we have obtained solving the
coexistence equations numerically.

In figure 4 we plot the volume fraction as a function of global density for the drop solution.
The volume fraction is a multivalued function of n′ and in the case kB = kA has a lower branch
close to x = 0, an intermediate branch, and an upper branch close to x = 1. The intermediate
branch is the physical solution. This will be shown below by looking at the free energy. The
physical solution has the intuitive property that the volume fraction increases as global density
increases.

We see that the bifurcation density n′
bif at which the phase-separated solution appears for

finite λ is larger than in MC. On the other hand, the B phase appears with a finite volume
fraction and its rate of growth is larger than in the MC case.

To decide the stability of the solution we have to compare the drop solution with the
single-phase solution. In figure 5 we show fA(n′), fB(n′) and the total free energy with
kB = kA for various λ. The MC line f 0(n′) = f 0

A + n′(f 0
B − f 0

A

)
has been subtracted. The

energy also is a multivalued function of n′. As the density increases the drop solution appears
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0.2, 0.3, 0.4, 0.5 and kB = kA for symmetrized drops. For λ = 0.4 we indicate with a vertical line
the discontinuity in the volume fraction to go from the uniform solution to the drop solution by
increasing the density.
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Figure 5. fA − f 0, fB − f 0 and f − f 0 in the symmetrized drop solution for λ = 0.1,

0.2, 0.3, 0.4, 0.5 (from bottom to top) and kB = kA versus n′. Here f 0 is the MC free energy for
λ = 0 (a straight line).

at n′
bif with two different branches. The upper branch overlaps with the uniform solutions.

In the upper (unstable) branch x decreases with density. For the lower branch one finds the
expected behaviour, i.e. x increases with density. Near the bifurcation the three solutions
(homogeneous, drop stable and drop unstable) are very close in energy. We find that the
bifurcation density nbif is lower than the density nc at which the energy of the lower energy
drop solution crosses the energy of the uniform phase fA(n′). The difference between nc

and nbif is negligible for all practical proposes in the case kA = kB as shown in the inset of
figure 6.

When the phases are both compressible, a critical value of the coupling exists such that
for λ > λc the inhomogeneous state is not possible (figure 6). The uniform A–B boundary line
is determined by the crossings of the parabolas in figure 5. The existence of a finite λc does
not depend on the specific parametrization of equation (19). It rather depends on the existence
of a maximum available PS energy gain per unit volume. More specifically, this gain is given
by the largest difference between the Maxwell construction free energy and the most stable
uniform free energy at each global density. If frustration increases at some point the mixing
energy cost is not compensated by this energy gain.
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indicate the points where the drop solution becomes less stable than the uniform solution. The full
lines are the lowest energy solutions whereas the thin dashed lines are the metastable solutions.
The thick dashed line (top) is the volume fraction for kA = kB and λ = 0.2.

When one of the compressibilities goes to zero, say kA, the crossing moves to the left
in figure 5 and the uniform A region shrinks until the boundary line for the uniform A phase
approaches the MC value

(
n = n0

A

)
. At the same time λc increases. This last case (kA = 0)

is representative of the coexistence of an insulator (A) with a metal (B).
In figure 6 we show the phase diagram in the λ–n′ plane for the two limiting cases kA = kB

and kA = 0. In both cases kA = kB and kA = 0 one sees that as λ increases the n′ range of
stability of PS shrinks (point (i), section 1). When the host phase is incompressible, one sees
from figure 6 at small n′ that a drop state is stable no matter how big λ is. Indeed, in this case
the PS energy gain stays finite at n0

A (the Maxwell construction density), whereas the energy
cost em ∼ u(x) ∼ x ∼ n′ vanishes.

In figure 7 we report the behaviour of the symmetrized drop radius, volume fraction and
the density of the B phase as a function of the global density for kA = 0.

The behaviour of the system close to the threshold for the appearance of drops is largely
independent of the compressibility of the drops and is mainly determined by that of the host.
Indeed, the boundary line (figure 6) is very similar for kA = 0 and for kA = kB when n′ > 1/2
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where B plays the role of the host. To further illustrate this point we also show in figure 7
the volume fraction for kA = kB and λ = 0.2 (thick dashed line). Near the threshold density
(n′ ≈ 0.76) (for both kA = 0 and kA = kB) the curves practically coincide. Therefore, the
case kA = 0 alone contains the two physically relevant cases of an incompressible host (A)

for small n′ and a compressible host (B) for large n′. Because of this we analyse this case in
more detail.

Starting from n′ = 1 and reducing n′ at fixed λ one switches from the uniform B phase
(x = 1, nB = n) to the A drop state (figure 7). For the generic case of a compressible host the
transition is abrupt with a discontinuity of both the volume fraction and the local density (point
(ii), section 1). Reducing the density further the two phases exchange their role and the host
is the incompressible phase A. In this case (incompressible host) the transition is continuous
as can be seen from the fact that x goes continuously to zero when n′ → 0. Indeed the mixing
energy, responsible for the nonlinearities, becomes irrelevant in this limit as explained above.

Remarkably, in contrast to the Maxwell construction, the local density nB depends on the
global density (figure 7) and more interestingly it increases as the global density decreases
(point (iii), section 1). This behaviour is generic for compressible phases, independent of the
ratio kA/kB and can give rise to unexpected effects in real systems. Any physical quantity
that depends on the local density will have an anomalous behaviour in the coexistence region.
We have recently proposed that this may be the reason why some manganites have regions
of doping where the doping dependence of the Curie temperature (dTc/dn) has opposite
sign with respect to the double exchange predictions. We assume a FPS state where the
Tc of ferromagnetic inhomogeneities depends on the local density rather than the global
one [7].

Independently of kA/kB the drop radius Rd behaves as 2
√

λls for small λ and saturates to
a value close to 2ls for large λ with some smooth variation around these values upon varying
the global density (figure 7). Generically inhomogeneities can only appear if they are small
enough that the electric field can penetrate them (point (iv), section 1). Indeed for large λ and
kA = 0 only soft phase (B) drops are allowed (n′ small, figure 6) and the radius Rd ∼ 2ls is of
the order of the screening length in the drops. For small λ since ls is the smallest screening
length among A and B and Rd ∼ 2

√
λls 
 ls , drops are penetrated by the field independently

of kA/kB . We mention that the same criterion applies to the interstitial regions.
This behaviour is better understood when the UDA is relaxed (section 4).
Another peculiarity of the curves in figure 5 is that the free energy of the drop

solution has the ‘wrong’ curvature, that is the compressibility (defined from ∂2f/∂2n) is
negative. This does not necessarily imply an instability since the usual stability condition of
positive compressibility is formulated for a neutral system, that is including the background
compressibility. Since we are assuming the inverse background compressibility to be an
infinite positive number (in our analysis the background density has a fixed homogeneous
value) it follows that the total compressibility is positive and from this point of view the
system is in a stable mixed state. Of course, this does not guarantee stability against more
complicated solutions than the simple crystal of drops. The situation is more severe for λ > λc

(see below).
Two situations can then occur. The two phases in the absence of long-range Coulomb

interaction can be connected continuously through the instability region as in van der Waals
treatment of the liquid gas transition. In this case one expects that the first derivative of
the bulk free energy with respect to the density is continuous and the second derivative (the
compressibility) is negative in some range. For λ > λc this finite negative compressibility
is compensated by the background which we assume to have a very large positive inverse
compressibility and the whole system is in a stable single phase at all densities.
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When instead the two phases cannot be connected continuously, e.g. because of a
symmetry mismatch, the bulk free energies should cross at a critical density nc just as in
our simple parametrization of equation (19). For λ > λc the transition occurs at nc between
the two uniform phases. Then a severe problem occurs because the free energy has a cusp
pointing up at nc and the electronic inverse compressibility is minus infinity. The system
cannot be stabilized by the large but finite positive inverse compressibility of the background.
Clearly in this situation one has to consider that the background is compressible from the
beginning. We have therefore extended the expansion of equation (19) and allowed the
background volume per formula unit to be different in the two phases with a certain lattice
compressibility. The free energy as a function of the unit cell volume consists now of a
parabola with positive curvature given by the lattice compressibility plus a pointing up cusp
due to the singular electronic contribution. As a result one has a two-minima structure for the
total free energy. In this case a standard Maxwell construction analysis gives a coexistence
between neutral phases with different unit cell volumes (point (v), section 1). The problem of
nucleation in this case is very anomalous as in mixed valence systems [13].

The same argument applies at the critical density where the drop solution crosses the
uniform solution, although the negative dip is much less pronounced in that case (see
figure 6). Usually the electronic system is a crystal where the background is provided by
the ionic lattice. If one trys to prepare the crystal with an electronic density close to the critical
one the system can break into two pieces, each one with a different lattice constant. Typically
the crystal is not at a fixed volume but at a fixed external pressure P. (We use capital P to
distinguish the pressure exerted on the crystal as a whole from the electronic pressures of the
phases pA and pB .) In this situation MC determines the equilibrium pressure P0 for phase
coexistence. P0 will depend on the global doping so, above λc, P0 versus doping determines a
phase boundary line which will cut ambient pressure at some critical doping. A large pressure
hysteresis around the equilibrium pressure has recently been predicted [13]. This effect is well
known to occur in mixed valence systems [9].

Since the electronic free energies depend on external parameters, a remarkable implication
is that the critical doping will also depend on external parameters such as magnetic field,
temperature, pressure, etc. In other words a crystal can be driven from a single phase to
a two-phase situation by changing external parameters. This explains the situation in some
manganites where one finds that a single-phase crystal breaks in a multidomain crystal by
lowering the temperature. The multidomain system shows lattice mismatch and large stress at
the interfaces in agreement with our analysis. [14, 15]

In section 4.1 analogous results are presented for the layered geometry case and compared
with a more elaborate computation which relaxes the UDA. In [7] we present more specific
applications to different physical systems.

4. Local density approximation

In this section we generalize our results to take into account the full spatial dependence of the
density. The basic assumption is that we can write the free energy of each phase as the spatial
integral of a free energy density which is a function of the local density, i.e. we are using a
local density approximation (LDA). The free energy reads

F =
∫

r∈A

d3r fA[n(r)] +
∫

r∈B

d3r fB [n(r)] +
1

8π

∫
d3r E2 + SABσ. (28)

Here r ∈ A indicates that the integral is restricted to the regions of phase A and SAB is the
total interface surface between A and B and we assume for simplicity ε0 = 1. One should
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be careful not to double count in σ surface energy costs that are due to the spatial variation
of the charge since this will be explicitly taken into account in the first three terms. On the
other hand, one can include in σ other effects, such as magnetic, which would not be included
otherwise. For simplicity we will assume σ to be density independent.

The electric field is related to the total charge density (electronic plus background) through
the Poisson equation

∇ · E = 4πρ (29)

with the total charge density

ρ = −e[n(r) − n̄]. (30)

Here n̄ is the global density of the previous section and the bar distinguishes it from the
spatially varying density n(r). Note that en̄ is the charge density of the background. The
condition of neutrality is written as

n̄ = 1

V

∫
r∈A

d3r n(r) +
1

V

∫
r∈B

d3r n(r). (31)

Using n(r) = nA for r ∈ A and n(r) = nB for r ∈ B one recovers the UDA.
Instead of minimizing the functional with respect to the density it is convenient to use

equations (29), (30) to express the density as a function of the electric field, (n = n(∇.E))

and minimize the functional with respect to the electric field profile. We look for periodic
solutions (layer, crystal, etc) and restrict the computation to one cell.

Minimizing the free energy (equation (28)) with respect to the electric field one obtains

E = −1

e
∇ ∂fX

∂n
[n(∇ · E)] (32)

where X = A or B when r ∈ A or r ∈ B respectively. This differential equation together
with the boundary condition determines the field profile. The boundary condition at the cell
boundary and at the internal boundary will be discussed in the example below. Once the
electric field profile is known for a given geometry the density profile is given by Poisson
equation. As a final step one should optimize the geometry.

Introducing the parabolic expressions (19) to parametrize the free energy densities in
equation (32) one obtains

E = l2
X∇∇ · E (33)

with l2
X = (4πe2kX)−1. Clearly lX is the screening length as anticipated in section 3. If we use

the compressibility of a free electron gas for kX (equation (20)) and reintroduce the dielectric
constant, lX corresponds to the Thomas–Fermi screening length

l2
X =

(π

3

)1/3 ε0h̄
2

4e2m
(
n0

X

)1/3 . (34)

We reach Thomas–Fermi theory which is the simplest version of the LDA used for electronic
structure computations. If we use the nondegenerate gas compressibility [equation (22)] lX is
the Debye–Hückel screening length.

4.1. Solution for the layered geometry

In the layered geometry the differential equation (33) reduces to a one-dimensional problem
and can be readily solved. The geometry is identical to that in the UDA approximation
(figure 1). The central B layer has width 2Rd and the cell has width 2Rc. The r coordinate is
perpendicular to the layers and r = 0 corresponds to the centre of the B layer. By symmetry
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the field is zero at r = 0 and r = Rc. In this case the boundary condition E⊥ = 0 for
the electric field perpendicular to the surface at the cell boundary automatically warrants the
neutrality condition (31) due to Gauss theorem.

Apart from the cell boundary the cell itself has an internal boundary that divides A and B
phases that we call E0 the electric field at the A–B boundary. The value of E0 is also optimized
and this provides an additional boundary condition.

The solution is of the form

EA(r) = E0
sinh[(r − Rc)/ lA]

sinh[(Rd − Rc)/ lA]
(35)

EB(r) = E0
sinh(r/ lB)

sinh(Rd/lB)

where EA(r) ≡ E(r) for r ∈ A, etc.
The charge density is given by

ρA = E0

4πlA

cosh[(r − Rc)/ lA]

sinh[(Rd − Rc)/ lA]
(36)

ρB = E0

4πlB

cosh(r/ lB)

sinh(Rd/lB)
.

The electric field at the A–B boundary can be related to the jump in the density at the
interface

E0 = −4πe[nB(Rd) − nA(Rd)]

[lB tanh(Rd/lB)]−1 + {lA tanh[(Rc − Rd)/lA]}−1
. (37)

It plays the same role as the parameter δ in section 2 so that we can find the optimum charge
distribution between A and B by minimizing the free energy with respect to E0.

After replacing equations (36), (37) in the expression for the free energy (equation (28))
and minimizing with respect to E0 we find

E0 = 4πeδ0
[
l2
B(n′ − 1) − l2

An′]
lB/ tanh(xRc/ lB) + lA/ tanh[(1 − x)/ lB]

(38)

where δ0 and n′ are defined as in section 3 and Rd has been eliminated in favour of the volume
fraction with Rd = xRc.

At this point the total free energy per unit volume f ≡ F/V takes the form

f = f 0
A + δ0µ0n

′ +
σ

Rc

+ 2πe2δ2
0

[
l2
A(n′)2(1 − x) + l2

Bx(1 − n′)2
]

− 2πδ2
0e

2
[−l2

B(1 − n′) − l2
An′]2

Rc{lB/ tanh(xRc/ lB) + lA/ tanh[(1 − x)Rc/ lA]} . (39)

The first two terms are the MC free energy, the third term is the surface energy and the last two
terms are both contributions due to the shift from the MC densities and due to the electrostatic
energy.

The last step is to minimize this free energy with respect to the volume fraction and Rc.
This gives two equations which can be solved numerically for Rc and x. As in section 3 it is
easier to fix x and solve for Rc and n′.

In the following we present results for the case kB = kA and compare with the linearized
UDA of section 3 for the layered geometry.

In figure 8 we plot the volume fraction as a function of global density in the LDA
approximation and the UDA approximation. Clearly the results are very similar even
quantitatively. In the UDA there is a jump in the volume fraction from zero to a finite
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Here f 0 is the MC free energy for λ = 0 (a straight line).

value. In the LDA the volume fraction is not discontinuous but grows very rapidly at the
threshold for the appearance of the inhomogeneous state. Another important difference is that
the solutions are no longer multivalued in the LDA.

In figure 9 we show fA(n′), fB(n′) and the total free energy with kB = kA for various λ.
The MC line f 0(n′) = f 0

A + n′(f 0
B − f 0

A

)
has been subtracted. The behaviour of the layered

solution in the UDA is similar to that found for drops in section 3.1 and coincides with it at
small λ. In the LDA approximation multivaluation disappears. The relaxation of the UDA
approximation obviously produces a gain in energy since the functional that we are minimizing
is the same in LDA and the UDA but in the UDA we are imposing an extra constraint on the
densities. The gain in energy however is quite small. The phase diagrams in the UDA and
LDA (not shown) are both very similar (even quantitatively) to the one for drops of section 3.1
except that they are fully symmetric. The critical λ above which the inhomogeneous solution
is never stable is given for kB = kA by λc = (9/5)1/3/2 ∼ 0.61 in the LDA and by λc ∼ 0.70
in the UDA.
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Figure 10. Normalized spatially averaged densities of each phase as a function of normalized
global density n′ for different λ, kB = kA and the linearized UDA (thin lines) and the LDA (thick
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coexistence region multivalued densities appear in the linearized UDA. The long branch is the
physical one.

In figure 10 we show the densities in each phase in the UDA. This is compared with the
densities of each phase in the LDA averaged spatially over the space spanned by each phase.
Again the behaviour is remarkably similar and the density discontinuities of the UDA become
very steep changes with the LDA.

Finally in figure 11 we show the behaviour of the dimensions of the cell and of the B layer
as a function of global density. Due to perfect phase exchange symmetry the cell width 2Rc

as a function of n′ is symmetric and has the minimum exactly at n′ = 0.5. The discontinuous
jump at the threshold in the UDA becomes a divergence in the LDA. For the same parameters
the cell widths are smaller in the UDA than in the LDA. This can be understood by noting that
in the UDA the widths are of order ls = [σ/(δ0e)

2]1/3. Roughly speaking, we can say that
the effect of the LDA is: (i) to increase the surface energy due to the bending of the charge
distributions at the surface and (ii) to screen the electric fields which can be schematized as
an effective reduction of the charge e. Both effects tend to increase the width of the layers as
found.

For small λ figure 11 shows that the LDA and UDA radii coincide just as the full solution.
This is because ld ∼ √

λls 
 ls (cf equations (23), (24)] so that the density is almost constant
inside the layer even in the LDA and the solutions are virtually the same. In this case the
Thomas–Fermi approximation is ineffective to generate a surface energy since all surface
energy effects other than the ones explicitly included in σ are due to density variations.
In other words, if one sets σ = 0 the system prefers to make small drops to avoid both
the Thomas–Fermi-induced surface energy effect and the Coulomb cost. This however is a
drawback of the Thomas–Fermi approximation since small drops will certainly have a large
surface energy due to the confinement of the electron gas. It is well known that Thomas–Fermi
theory is a poor approximation to model surfaces.

If one increases λ inhomogeneities are possible until the point at which ld ∼ ls and
λ = λc. It is not possible to have inhomogeneities of dimension ld � ls because in the region
far from the surface screening makes the local density coincide with the global density and
this inhibits any PS energy gain. It is then convenient for the system to avoid any surface and
remain single phase.
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to r = 0 corresponds to the B phase and the rest is the A phase. The structure repeats periodically
in the r direction. The horizontal lines signal the global density.

In figure 12 we show the density profile for λ = 0.3 and for two different values of the
global density. One is close to the threshold for the appearance of the B phase (n′ = 0.353).
In this case the A density is close to the density of the background and bends down close to the
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interface to screen the B layer charge. Well in the bulk of A phase, where the charge density
coincides with the density of the background, we have E ∼ 0 as expected for a metal. When
the global density increases the local densities decrease according to the behaviour discussed
before for the average densities (figure 10). The layers become of the order of the screening
length and the electric field is never completely screened.

5. Conclusions

In this work we have generalized the Maxwell construction to a situation that appears often in
strongly correlated electronic systems, i.e. phase separation frustrated by the LRC interaction.

We discussed (i) the stabilization of the uniform phases as the frustrating forces
are increased, (ii) the anomalous behaviour of the frustrated phase-separated state at the
mesoscopic scale and (iii) the singular behaviour which results in a lattice instability when
frustration dominates.

We used a UDA and a more involved LDA approach. Both approaches are shown to give
very similar results, thus justifying the general use of the much simpler UDA. For the LDA
we have approximated the energy functional in the case of a metal with the simplest LDA
functional, i.e. the Thomas–Fermi approximation. Our formulation however is general and
allows for more sophisticated functionals.

As is intuitively expected, the LRC interaction tends to stabilize the non-separated uniform
phase in the presence of a rigid background. This has been illustrated in the general analysis
of two generic phases described by parabolic free energies. We have shown that the region
of phase separation contracts when the LRC and surface energy effects are switched on and
disappears above a critical value of a dimensionless parameter λ. This parameter plays the
role of an effective coupling which controls the degree of frustration and characterizes the
competition between the energy cost due to the surface and Culombic energy and the energy
gain in the MC. The balance between these energies determines whether the phase-separated
state exists or not.

When λ is small (λ < λc) a mixed state arises. We have modelled this situation by
considering a Wigner crystal of drops of one phase hosted by the other phase and a layered
geometry which behaves as a one-dimensional analogue of the Wigner crystal. We believe
that our general conclusions (including the existence of a critical λ) are not sensitive to the
geometry of the mixed state as long as the two length scales Rc and Rd are much larger than
the interparticle distance. The former length (cell size) characterizes a periodic structure and
the latter (bubble size) how this periodic structure is divided to host the two phases.

In the mixed state novel nonlinear effects appear which are not present in the unfrustrated
MC. Within the UDA the volume fraction and the drop radius of the minority phase do not
start from zero but from a finite value and the transition to the drops state is abrupt. In the LDA
physical quantities are not discontinuous but grow very steeply at the threshold mimicking the
discontinuous behaviour.

An additional nonlinear effect in the drop state is that the local densities of each phase
have an anomalous behaviour decreasing as the global density increases. This can affect
properties of the system which are sensitive to the local density as has been shown for the
Curie temperature of the manganites [7]. We emphasize that also local probes such as NMR,
core spectroscopy, etc should be sensitive to this effect and may be used to detect Coulomb
frustrated phase separation in real systems.

In the case of strong Coulomb interaction and large surface energy (λ > λc) a transition
between two uniform phases occurs. We have shown that in this case the compressibility is
singular and a lattice instability will take place if the ionic background is not fully rigid, as
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in reality. The system (both electrons and ions) can separate into two neutral phases with
different specific volumes.

This will also happen at the transition point between the uniform phase and the drop state
although the instability is weaker. This instability can become stronger when one of the phases
is incompressible. This is the case of phase separation between a metal and an insulator. λc

diverges and the transition between the uniform metal and the drop state can happen in the
presence of strong frustration. In this case the energy also has a prominent cusp which leads
to a volume instability.

This scenario is in good agreement with the situation in manganites where mesoscopic
phase separation appears close to a phase separation at a larger scale. The latter is characterized
by the coexistence of two globally neutral phases with different unit cell volumes as found
here [14, 15].
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[3] Löw U, Emery V J, Fabricius K and Kivelson S A 1994 Phys. Rev. Lett. 72 1918
[4] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[5] Hennion M et al 1998 Phys. Rev. Lett. 81 1957
[6] Lorenzana J, Castellani C and Di Castro C 2001 Phys. Rev. B 64 235127
[7] Lorenzana J, Castellani C and Di Castro C 2001 Phys. Rev. B 64 235128
[8] Lorenzana J, Castellani C and Di Castro C 2002 Europhys. Lett. 57 704
[9] Lawrence J M, Riseborough P S and Parks R D 1981 Rep. Prog. Phys. 44 1

[10] Wigner E 1934 Phys. Rev. 46 1002
[11] Mahan G D 1990 Many Particle Physics (New York: Plenum)
[12] Nagaev E, Podel’shchikov A I and Zil’bewarg V E 1998 J. Phys.: Condens. Matter 10 9823
[13] Bustingorry S, Jagla E and Lorenzana J 2003 Phys. Rev. Lett. (submitted)
[14] Uehara M, Mori S, Chen C and Cheong S-W 1999 Nature 399 560
[15] Cox D E, Radaelli P G, Marezio M and Cheong S W 1998 Phys. Rev. B 57 3305


